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Navier-Stokes Equations: Continuum Theory

Conservation laws of mass, momentum, and energy:

∂tρ+ ∇·ρu = 0 (1a)

ρ∂tu+ ρu·∇u = −∇·P (1b)

ρ∂te+ ρu·∇e = −P : ∇u−∇·q (1c)

P = pI− S, Sαβ = µ (∂αuβ + ∂βuα) +

(
ζ − 2

3
µ

)
δαβ∇·u (1d)

q = −κ∇T , e = e(T ), p = p(ρ, T ) (1e)

Dimensionless Navier-Stokes equations (similarity law):

ρ∂tu+ ρu·∇u = − 1

γMa2
∇p+

1

Re
∇·S (2a)

ρ∂te+ ρu·∇e = − 1

γMa2
p∇·u+

1

α
∇2T +

1

Re
S :∇u (2b)

α = (γ − 1) Pr Ma Re, γ := CP /CV
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Kinetic Equation

The kinetic equation for the single particle distribution function f in
phase space ΓΓΓ := (x, ξ):

∂tf + ∇ · (ξf) = Q, f := f(x, ξ, t) (3)

The Uehling-Uhlenbeck collision model:

Q[f, f ] =

∫
R3

dξ2

∫
S2

dΩK
[
(1 + ηf1) (1 + ηf2) f

′
1f
′
2 −

(
1 + ηf ′1

) (
1 + ηf ′2

)
f1f2

]
(4)

where Ω is the solid angle, K := K(ξ1, ξ2,Ω) is the collision kernel,

K(ξ1, ξ2,Ω) = K(ξ2, ξ1,Ω) = K(ξ′1, ξ
′
2,Ω) ≥ 0 (5)

η =


+1 Bose-Einstein

0 Maxwell-Boltzmann
−1 Fermi-Dirac

(6)

Luo (ODU) LBE for CFD NASA Ames 03/13/2019 7 / 54



From KE to Hydrodynamics Equations

Expansion of f in terms of the Knudsen number ε = Kn := `/L:

f = f (0) + εf (1) + ε2f (2) + · · ·, f (0) =
ρ

(2πRT )D/2
e−(ξ−u)

2/2RT (7)

Velocity moments of f are hydrodynamic quantities and their fluxes:

ξ0: ρ =

∫
fdξ =

∫
f (0)dξ (8a)

ξ1: ρu =

∫
fξdξ =

∫
f (0)ξdξ (8b)

ξ2: ρe =
D

2
ρRT =

∫
1

2
c2cf dξ =

∫
1

2
c2cf (0) dξ, c := ξ − u (8c)

ξ2: P =

∫
ccf dξ, ξ3: q =

∫
1

2
c2cf dξ (8d)
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Multiscale Formalism

∂t〈ξnf〉+ ∇ · 〈ξn+1f〉 = 〈ξnQ〉, n = 1, 2, 3,

∂tρ+ ∇ · ρu = 0 (9a)

∂tρu+ ∇ · ρ (uu+ P) = 0 (9b)

∂tρE + ∇ · ρ (uE + u · P + q) = 0, E := ρe+
1

2
ρu2 (9c)

P = P(0) + P(1) + P(2) + · · · q = q(0) + q(1) + q(2) + · · · (9d)

f = f (0) =⇒

{
P(0) =

3

2
ρRT I

q(0) = 0

}
=⇒ Euler Eqns (inviscid)

f = f (0) + f (1) =⇒

{
P(1) = −1

2
µ[(∇u) + (∇u)†]

q(1) = −κ∇T

}
=⇒ NS Eqns

· · ·
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Micro-, Meso-, Macro-Descriptions of Fluids

Knudsen Number Kn :=
`

L
=

Mean Free Path

Characteristic Hydrodynamic Length

Microscopic

Theory

Deterministic
Newton’s Law

Molecular
Dynamics

Mesoscopic

Theory

Statistical
Mechanics

Liouville
Equation

BBGKY
Hierachy

Boltzmann
Equation

xi, tn ci

Direct Simulation
Monte Carlo

Discrete
Velocity Models

Discrete
Ordinance Method

Moment
Equations

Macroscopic (Continuum) Theory (Kn ≈ 0)

PDEs of Conservation Laws

Navier-Stokes
Equations

Euler
Equations

Turbulence Models
RANS, LES, · · ·

Super-Burnett

Equation

Burnett
Equation

Kinetic Theory

Hilbert and Chapman-Enskog analysis

Lattice Gas
Automata

Lattice Boltzmann
Equation

Gas-Kinetic
Scheme

Linear Relaxation Models
System of Finite Moments
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A Priori Derivation of Lattice Boltzmann Equation

The Boltzmann Equation for f := f(x, ξ, t) with BGK approximation:

∂tf + ξ ·∇f =

∫
[f ′1f

′
2 − f1f2]dµ ≈ L(f, f) ≈ − 1

λ
[f − f (0)] (10)

The Boltzmann-Maxwellian equilibrium distribution function:

f (0) = ρ (2πθ)−D/2 exp

[
−(ξ − u)2

2θ

]
, θ := RT (11)

The macroscopic variables are the first few (d+ 2) moments of f or f (0):

ρ

1
u
e

 =

∫  1
ξ

c·c/2

 fdξ =

∫  1
ξ

c·c/2

 f (0)dξ, c := ξ − u (12)

The invariants of the collision Q manifest the microscopic conservation
laws, which are the physical basis of the macroscopic conservation laws:∫  1

ξ
c·c/2

Qdξ =

∫  1
ξ

ξ ·ξ/2

Qdξ =

0
0
0

 (13)
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Integral Solution of Continuous Boltzmann Equation

Rewrite the Boltzmann BGK Equation in the form of ODE:

Dtf +
1

λ
f =

1

λ
f (0) , Dt := ∂t + ξ ·∇ (14)

Integrate Eq. (14) over a time step δt along characteristics:

f(x+ ξδt, ξ, t+ δt) = e−δt/λ f(x, ξ, t) (15)

+
1

λ
e−δt/λ

∫ δt

0
et
′/λ f (0)(x+ ξt′, ξ, t+ t′) dt′

Remark: a fully compressible finite-volume scheme or higher-order
schemes can also be formulated based upon the integral solution.1

1
K. Xu and K. Prendergast. J. Comput. Phys. 1149 (1994); K. Xu. ibid 171289–335 (2001).
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Passage to Lattice Boltzmann Equation

The necessary steps to derive LBE:2

1 Discretize the time t;

2 Low Mach number expansion of the distribution functions;

3 Discretize ξ-space with necessary and min. number of ξi;

4 Discretization of x space according to {ξi} and δt.

2
X. He and L.-S. Luo, Phys. Rev. E 55:R6333 (1997); ibid 56:6811 (1997).
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LBE: Discretizing t

Linear approximation of f (0) in the integral solution (15):

f (0)(x+ ξt′, ξ, t+ t′) =

(
1− t′

δt

)
f (0)(t) +

t′

δt
f (0)(t+ δt) +O(δ2t )

the integral solution (15) becomes:

f(x+ ξδt, ξ, t+ δt)− f(x, ξ, t) =
(
e−δt/λ − 1

) [
f(x, ξ, t)− f (0)(x, ξ, t)

]
+

(
1 +

δt
λ

(
e−δt/λ − 1

)) [
f (0)(t+ δt)− f (0)(t)

]
︸ ︷︷ ︸

O(δ2
t )

+O(δ2t )

With the Taylor expansion in δt, and τ := λ/δt,

f(x+ ξδt, ξ, t+ δt)− f(x, ξ, t) = −1

τ
[f(x, ξ, t)− f (0)(x, ξ, t)] +O(δ2t )

(16)
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Low Mach Number Expansion (Approximation)

The low-Mach-number (u ≈ 0) expansion of the distribution functions
f (0) and f up to O(u2) is sufficient to derive the Navier-Stokes
equations:

f (eq) =
ρ

(2πθ)D/2
exp

[
−ξ

2

2θ

]{
1 +

ξ · u
θ

+
(ξ · u)2

2θ2
− u

2

2θ

}
+O(u3) (17a)

f =
ρ

(2πθ)D/2
exp

[
−ξ

2

2θ

] 2∑
n=0

1

n!
a(n)(x, t) : H(n)(ξ) (17b)

where a(0) = 1, a(1) = u, a(2) = uu− (θ − 1)I, and {H(n)(ξ)} are the
tensorial Hermite polynomials.

It should be noted that some defects of the lattice Boltzmann method
are related to the low-Mach-number expansion of the distribution
functions. However, this expansion is necessary to make the lattice
Boltzmann method a simple and explicit scheme.
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Discretize ξ and Preserve Conservation Laws

To compute conserved moments (ρ, ρu, and ρe) and their fluxes, one
must evalute:

I =

∫
ξmf (eq)dξ =

∫
exp(−ξ2/2θ)ψ(ξ)dξ, (18)

where 0 ≤ m ≤ 3, and ψ(ξ) is a polynomial in ξ. The above integral can
be evaluated by quadrature exactly:

I =

∫
exp(−ξ2/2θ)ψ(ξ)dξ=

∑
j

Wj exp(−ξ2j /2θ)ψ(ξj) (19)

where ξj and Wj are the abscissas and the weights. Then

ρ=
∑
i

f (eq)

i =
∑
i

fi, ρu=
∑
i

ξif
(eq)

i =
∑
i

ξifi, (20)

where fi := fi(x, t) := Wif(x, ξi, t), and f (eq)

i := Wif
(eq)(x, ξi, t).

The quadrature must preserve the conservation laws exactly!
Luo (ODU) LBE for CFD
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Example: 9-bit LBE Model with Square Lattice

In two-dimensional Cartesian (momentum) space, set

ψ(ξ) = ξmx ξ
n
y

the integral of the moments can be given by

I = (
√

2θ)(m+n+2)ImIn, Im =

∫ +∞

−∞
e−ζ

2
ζmdζ, (21)

where ζ = ξx/
√

2θ or ξy/
√

2θ.
The second-order Hermite formula (k = 2) is the optimal choice to
evaluate Im for the purpose of deriving the 9-bit model, i.e.,

Im =
∑3

j=1 ωjζ
m
j .

Note that the above quadrature is exact up to m = 5 = (2k + 1).
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Discretization of Velocity ξ-Space (9-bit Model)

The three abscissas in momentum space (ζj) and the corresponding
weights (ωj) are:

ζ1 = −
√

3/2 , ζ2 = 0 , ζ3 =
√

3/2 ,
ω1 =

√
π/6 , ω2 = 2

√
π/3 , ω3 =

√
π/6 .

(22)

Then, the integral of moments becomes:

I = 2θ

[
ω2
2ψ(0) +

4∑
i=1

ω1ω2ψ(ξi) +
8∑
i=5

ω2
1ψ(ξi)

]
, (23)

where

ξi =


(0, 0) i = 0,

(±1, 0)
√

3θ, (0, ±1)
√

3θ, i = 1 – 4,

(±1, ±1)
√

3θ, i = 5 – 8.

(24)
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Discretization of Velocity ξ-Space (9-bit Model)

Identifying
Wi = (2π θ) exp(ξ2i /2θ)wi , (25)

with c := δx/δt =
√

3θ, or c2s = θ = c2/3, δx is the lattice constant, then:

f (eq)

i (x, t) = Wi f
(eq)(x, ξi, t)

= wi ρ

{
1 +

3(ci · u)

c2
+

9(ci · u)2

2c4
− 3u2

2c2

}
, (26)

where weight coefficient wi and discrete velocity ci are:

wi =


4/9,
1/9,
1/36,

ci = ξi =


(0, 0), i = 0 ,
(±1, 0) c, (0, ±1) c, i = 1 – 4,
(±1, ±1) c, i = 5 – 8.

(27)

With {ci|i = 0, 1, . . . , 8}, a square lattice structure is constructed in
the physical space.
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Discretized 2D Velocity Space

Cartesian coordinates in ξ lead to a
2D square lattice:

ci=


(0, 0), i = 0 ,
(±1, 0) c, (0, ±1) c, i = 1 – 4,
(±1, ±1) c, i = 5 – 8,

where c := δx/δt.

Polar coordinates (r, θ) lead to a
2D triangular lattice:

ci = (0, 0), 1 = 0,

cix = cos[(i− 1)π/3]c, i = 1 – 6,

ciy = sin[(i− 1)π/3]c, i = 1 – 6.
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Discretized 3D Velocity Space on a Basic Cube

Discrete velocities on a basic 3D cube:

ci =


(0, 0, 0), 1 (Z)
(±1, 0, 0) c, (0, ±1, 0) c, (0, 0, ±1) c, 6 (F)
(±1, ±1, 0) c, (0, ±1, ±1) c, (±1, 0, ±1) c, 12 (E)
(±1, ±1, ±1) c, 8 (C)

Possible models with the discrete velocities on a basic cube:

Model Velocities Speeds

D3Q13 Z + E = 13 0 +
√

2c

D3Q15 Z + F + C = 15 0 + 1c +
√

3c

D3Q19 Z + F + E = 19 0 + 1c +
√

2c

D3Q27 Z + F + E + C = 27 0 + 1c +
√

2c +
√

3c
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D3Q27 Z + F + E + C = 27 0 + 1c +
√

2c +
√

3c
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LBE: Discretizing x

The “basic cell” defined by a discrete velocity set
Vq := {ci|0 ≤ i ≤ (q − 1)} is space-filling, e.g., square and
equilateral triangle in 2D, and cube in 3D;

In the d-dimensional lattice space δxZd with the lattice constant δx
and periodic boundary conditions,

xj + ciδt ∈ δxZd, ∀xj ∈ δxZd and ∀cj ∈ Vq

Coherent discretization: Phase space (x, ξ) and the time t are
discretized coherently such that δx = ‖ci‖δt (for some ci).

The coherent discretization is one of distinctive feature of the LBE.

Luo (ODU) LBE for CFD
NASA Ames 03/13/2019 27 /

54



Outline

1 Motivations
The Role of Kinetic Theory
Scales and Related Methods

2 LBE: Mathematical Derivation
Discretizing time t
Low-Mach-Number (Gauss-Hermite) Expansion
Discretize Velocity Space ξ
Discretize Space x
Treatment of Collision — Relaxation Models
Example: D3Q19
Other Models

3 Numerical Results
DNS of Homogeneous Isotropic Turbulence
DNS of Flow past a Sphere — Drag Crisis

4 Conclusions

Luo (ODU) LBE for CFD
NASA Ames 03/13/2019 28 /

54



Collision Term

Based on the distribution functions fi and f (eq)

i (ρ, u):

Q = −1

τ

[
f − f (eq)(ρ, u)

]
Based on the moments of the distributions fi and f (eq)

i (ρ, u):

Q = −MS
[
m−m(eq)(ρ, u)

]
, m := Mf , f := M−1m

Based on the cumulants of the distributions fi and f (eq)

i (ρ, u):

Q = Q(C), Clmn :=
1

c(l+m+n)

∂l∂m∂n lnL [fijk + wijk(1− ρ)]

∂Ξl1∂Ξm2 ∂Ξn3

∣∣∣∣
Ξ=0

L[fijk] := L[f(ξijk)] := F (Ξ) is the Laplace transform of
fijk := f(ξijk), C000 = 0, (C100, C101, C001) = (u, v, w) := u.
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Example: D3Q19 MRT-LBE Model3

f(xj + cδt, tn + δt) = f(xj , tn)−M−1S
[
m−m(eq)(ρ, u)

]
(28)

Conserved quantities:

ρ =
∑Q−1

i=0 fi, j = ρu =
∑Q−1

i=0 fici

Transport coefficients and the speed of sound (c := δx/δt):

ν =
1

3

(
1

sν
− 1

2

)
cδx, ζ =

(5− 9c2s)

9

(
1

se
− 1

2

)
cδx, c2s =

1

3
c2

The transform between the discrete distribution functions f ∈ V = RQ
and the moments m ∈M = RQ:

m = Mf , f = M−1m

Note ΛΛΛ = MM† is diagonal, thus M−1 = M†Λ−1.

3
D. d’Humières, I. Ginzburg, M. Krafczyk, P. Lallemand, and L.-S. Luo, Philos. Trans. R. Soc. London A

360(1792):437–451 (2002).
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D3Q19: Equilibria

e(eq) = −11ρ+
19

ρ
j · j (29a)

p(eq)xx =
1

3ρ

[
2j2x − (j2y + j2z )

]
, p(eq)ww =

1

ρ

[
j2y − j2z

]
(29b)

p(eq)xy =
1

ρ
jxjy, p(eq)yz =

1

ρ
jyjz, p(eq)xz =

1

ρ
jxjz (29c)

(q(eq)x , q(eq)y , q(eq)z ) = −2

3
(jx, jy, jz) (29d)

m(eq)
x = m(eq)

y = m(eq)
z = 0 (29e)

ε(eq) = 3ρ− 11

2ρ
j · j, π(eq)xx = −1

2
p(eq)xx , π(eq)ww = −1

2
p(eq)ww (29f)
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Other Models

D3Q39 Model:4

ci =


(0, 0, 0), (±1, 0, 0) c, . . . , (±1, ±1, ±1) c, . . . 15
(±2, 0, 0) c, . . . , (±2, ±2, 0) c, . . . 18
(±3, 0, 0) c, . . . 6

The energy equation is solved separately,5 k-ε model, . . .

Crystallographic LBE Model (RD3Q27):6

ci =


(0, 0, 0) 1 (Z)
(±1, 0, 0) c, (0, ±1, 0) c, (0, 0, ±1) c 6 (F)
(±1, ±1, 0) c, (0, ±1, ±1) c, (±1, 0, ±1) c 12 (E)
(±1/2, ±1/2, ±1/2) c 8 (C)

4
Y.B. Li et al. AIAA 2016-2312182 (2016).

5
P. Lallemand and L.-S. Luo. Phys. Rev. E 68(3):036706 (2003).

6
M. Namburi, S. Krithivasan, S. Ansumali, Sci. Rep. 27172 (2017).
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Decaying Homogeneous Isotropic Turbulence

The decaying homogeneous isotropic turbulence is the solution of the
incompressible Navier-Stokes equation

∂tu+ u ·∇u = −∇p+ ν∇2u, ∇ · u = 0, x ∈ [0, 2π]3, (30)

with periodic boundary conditions. The initial velocity satisfies a given
initial energy spectrum E0(k)

E0(k) := E(k, t = 0) = Ak4e−0.14k
4
, k ∈ [ka, kb] (31)

The initial velocity u0 can be given by Rogallo procedure:

ũ0(k) =
αkk2 + βk1k3

k
√
k21 + k22

k̂1 +
βk2k3 − αk1k
k
√
k21 + k22

k̂2 −
β
√
k21 + k22
k

k̂3, (32)

where α =
√
E0(k)/4πk2eıθ1 cosφ, β =

√
E0(k)/4πk2eıθ2 sinφ,

ı :=
√
−1, and θ1, θ2, φ ∈ [0, 2π] are uniform random variables.
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Pseudo-Spectral Method

The pseudo-spectral (PS) method solve the Navier-Stokes equation in
the Fourier space k, i.e.,

u(x, t) =
∑
kũ(k, t)eık·x, −N/2 + 1 ≤ kα ≤ N/2.

The nonlinear term u ·∇u computed in physical space x by inverse
Fourier-transform ũ and kũ to x for form the nonlinear term; and
it is transformed back to k space;

De-aliasing: ũ(k, t) = 0 ∀‖k‖ ≥ N/6;

Time matching: second-order Adams-Bashforth scheme:

ũ(t+ δt)− ũ(t)

δt
= −3

2
T̃ (t) +

1

2
T̃ (t− δt)e−νk2δt,

where T̃ := F [ω × u]− (F [ω × u] · k̂)k̂.
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Parameters in DNS

Use N3 = 1283 and [ka, kb] = [3, 8].
In LBE: ν = 1/600 (cδx), c := δx/δt = 1, Mamax = ‖u0‖max/cs ≤ 0.15,
A = 1.4293 · 10−4 in E0(k), and K0 ≈ 1.0130 · 10−2, u′0 ≈ 8.2181 · 10−2.
The time t is normalized by the turbulence turn-over time t0 = K0/ε0.
In SP method, K0 = 1 and u′0 =

√
2/3.

Method L δx u′0 δt ν δt′

LBE 2π 2π/N
√

2K0/3 2π/N ν 2π/Nt0
PS 2π 2π/N

√
2/3 2π

√
K0/N ν/

√
K0 2π/Nt0

The Taylor microscale Reynolds number:

Reλ :=
u′λ

ν
, λ :=

√
15

2Ω
u′ :=

√
15ν

ε
u′ (33)

The resolution criterion:

SP: N ∼ 0.4Re
3/2
λ , η/δx ≥ 1/2.1, N = 128→ Reλ = 46.78

LBE: ηkmax = η/δx ≥ 1, N = 128→ Reλ = 24.35.
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Initial Conditions

For the pseudo-spectral method:

Generate ũ0(k) in k-space with a given E0(k) (Rogallo’s
procedure) with K0 = 1 and u′ =

√
3/2;

The initial pressure p0 is obtained by solving the Poisson equation
in k-space.

For the LBE method:7

Use the initial velocity u0 as in PS method except a scaling factor
so that Mamax = 0.15;

The pressure p0 is obtained by an iterative procedure with a given
u0.

7
R. Mei, L.-S. Luo, P. Lallemand, and D. d’Humières. Computers & Fluids 35(8/9):855–862 (2006).
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Velocity Iso-surface in 3D, Reλ = 24.37

LBE vs. PS1 (equal δt): t′ = 0.1348, 0.2359, 0.573; ‖u(t′)/u′‖ = 2.0
S

p
ec

tr
al

L
B

E
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Vorticity Iso-surface in 3D, Reλ = 24.37

LBE vs. PS1 (equal δt): t′ = 0.1348, 0.2359, 0.573; ‖ω(t′)/u′‖ = 13.0
S

p
ec

tr
al

L
B

E
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‖u(t′)/u′‖ and ‖ω(t′)/u′‖ at Reλ = 24.37, t′ = 4.048

LBE vs. PS1 (equal δt) and PS2 (δt/3), PS1 vs. PS2
ve

lo
ci

ty
u
/
u
′ 0

vo
rt

ic
it

y
ω
/u
′ 0
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‖u(t′)/u′‖ and ‖ω(t′)/u′‖ at Reλ = 24.37, t′ = 29.949

LBE vs. PS1 (equal δt) and PS2 (δt/3), PS1 vs. PS2
ve

lo
ci

ty
u
/
u
′ 0

vo
rt

ic
it

y
ω
/u
′ 0
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L2 ‖δu(t′)‖ and ‖δω(t′)‖

LBE vs. PS1 (equal δt) and PS2 (δt/3), PS1 vs. PS2.
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Flow past a Sphere: DNS of Drag Crisis8

6 refinement
levels
3 resolutions:
coarse
40,769,886
D = 410δx
medium
73,855,027
D = 512δx
fine
133,438,032
D = 640δx

8
M. Geier, A. Pasquali, M. Schönherr. J. Comput. Phys. 348:862–888 (2017); ibid 348:889–898 (2017).
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Flow past a Sphere: DNS of Drag Crisis
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Characteristics and Features of LBE

It can be shown:

Related to (central) finite-difference scheme — stencil defined by
the discrete velocities

Related to artificial compressibility model

Conservative — Galilean invariant, isotropic9

Accuracy: 2nd-order for both velocity u and the stress σ,10

1st-order for pressure p

Valid for variable viscosity models, e.g., ν = ν(σ(x)).11

Some other Features:

Simple and easy?!

Cartesian cubic mesh, 2−n refinement, cut-cell, . . .

low FLOP counts, memory/communication bound, . . .

9
P. Lallemand and L.-S. Luo. Phys. Rev. E 61:6546–6562 (2000).

10
W.-A. Yong and L.-S. Luo. Phys. Rev. E 86(6):065701(R) (2012).

11
Z. Yang and W.-A. Yong. Multiscale Model. Simul. 12(3):1028 (2014).
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Why Kinetic Methods?
The Boltzmann equation is a 1st-order semi-linear PDE (in phase
space), the Navier-Stokes equation is a 2nd-order nonlinear PDE (in
space). Features of kinetic schemes based on 1st-order PDEs include:12

Requires the smallest possible stencil for accurate discretization,
thus least need for inter-nodal data communication;

Nonlinearity is in local collision term, stiffness of which can be
overcome by local techniques.

Discretized 1st-order systems may be easier to converge than
equivalent higher-order systems.

1st-order PDE’s yield the highest potential discretization accuracy
on non-smooth, adaptively refined grids.

The systems of 1st-order PDE’s are better suited for functional
decomposition, thus easier to parallelize.

The Boltzmann equation is valid for nonequilibrium flows which
cannot be modeled by the Navier-Stokes equations.

12
B. van Leer, AIAA Paper 2001-2520 (2001).
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Food for Thought

For CFD, hyperbolic or elliptic PDEs?

For an n-th order scheme, how to guarantee that the operators ∇
and ∇2 are isotropic to the order consistent/comparable with n?

How to construct physics-based numerics beyond upwind,
(approximated) multi-dimensional Riemann solver, artificial
dissipation, and limiters?

How to construct accurate and simple(?) algorithms amendable to
MIC/GPU technology, or any future hardware technologies?
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Other Applications (Animations)

Free-Surface Flow (Krafczyk et al., TUB):

Water-Tunnel: 384× 64× 48, δx = 10cm, LES, Re = 3 · 106

Flow past a bridge
Tsumani over S. Manhatten: 512× 512× 80, δx = 2.35m

Computational Steering (Krafczyk et al., TUB):
Digital Wind Tunnel, 64× 64× 320, δx = 10cm, Re = 4 · 103

Ladd (UFL): Cluster of 1812 particles, Re = 0.3

Flow through Porous Media (Krafczyk et al., TUB):

Air through fluids in a packed-sphere bio-filter
Multi-component flow past porous media: Imbibe-Drain-Reimbibe

Droplet collision (Frohn et al., Univ. Stuttgart):

Merge, Separate, and Extra-One; LBE vs. Experiment.

More (Thüry et al., Univ. Erlangen):

Bubbles rising in water tank
Metal foams
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Thanks! Questions?
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